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WEAK CONVERGENCF. OF A SEQUENCE OT QUEUEING AND
STORAGE PROCESSES T0O A SINCULAZ DIFFUSION.

WALTER A. ROSENKRANTZ
Department of Mathematics and 3tatistics
University of Massachusegts
Amherst, MA 01003

1. INTRODUCTION

It has been known for a long time that heavy traf€fic limit theorems in que-
ucing theory are but a special case of the so-called iiiffusion approximation in
Physics and Genetics. Take for example Kingman's (19¢) heavy traffic approxima-
tion for the stationary waiting time distribution for i sequence of GI/GI/1l queues

Q(a)
the

depending on a parameter a. Denote the

nth

waiting time, excluding service, of

customer by W(n,a) and let U(n,a) = S{n,u; - T(n,a) where S(n,a) =

nth  customer and T(n,a) = inter arrival time betwecen the
E(U(n,a)) = -390,

Then we have the following Theorem 1 (Kingman {1952)):

service tine of the
nth and (n + 1)St

a >0,

2
customer and assume variance of U(n,a)=0",

lim azn = oo,
o, a+0

lim P((a/0)W(n,a) <x) =1 -exp(-2x), 0<x <= , provided

o> ®

Sonewhat later Kingman (1965) presented a more el:gant but heuristic proof of
this result which justifies referring to such a theorea as a diffusion approxima-
tion, 1t is worthwhile sketching the heuristic proof ¢ Theorem 1 here, referring
the readcr to Rosenkrantz (1980) for a rigorous proof as well as an estimate of the

rate of convcrgence. To begin with, one notes that

(1.1) Fn,u(") = P((a/c)W(n,a) <x) = P( sup,

y ()7 x)
o<t<a’n ™7

where Ya “(l) is a certain stochastic process with ciutinuous paths. One can
'

lk and storage then show, forrmally at least, that
I‘ .
Y —.—'.- (1.2) Ho oy (t) = y(t)
; for e n> o, 0 ™
. f the [ e )
q ' where y(t) = w(x) - t. Here w(t) 1is the standard *-.'imensional Wiener process
r. and so y(t) 1is the Wiener process with negative drif:. Tt follows at once from
S (1.2) that
: (1.3) Him  PC osup y  (t) £x) = PCsap v(t) 7 x)
nre,ard 07t <én ’ 0<t <
"‘ ’ ‘ and an casy calculation, see e.p. Karlin-Taylor (1975,. p.361, yfelds the result
. . that P( sup y(t} < x) = 1 - exp(-2x), 0 < x < o,
: — 0t
:‘ ! Another and simplier example of a heavv traffie 14t theorem is the following !
e ap— -
‘ let Ny(t) denote the quene size of an M/M/1 queae with arrival rate },, mean
: ey l o
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service time distribution " and traffic intensity o = \“/un. Assume X“ = 2. STATEMENT AND ¥
- 2 b
BT &n 1/ for some & > 0, s0 0 < o < 1 and denote by ug the variance of Let  X(t) den::
the service time distribution «nich in this case equals u;z cess) with release r]
2 2 to be a compound Po: *
{HEOREM 2:  Assume X = lim ) = lim un = s0 lim fo t1, and lim o = g7 the cumulative distz-
n-b var n > n—':}
then lia N (at)/van = v(t) . re y(t) is the Wiener process on R = [0,) with Pinsky (1972) have
nee 23 stochastic integral
variance A + o7u7, negative rift & and reflected at the origin., Theorem 2 has
been extended in many wavs an by many authors including Iglehart and Whitt, The (2.1) (th) = X(
N, (t
survey article by Whitt (19/7. s a uscful reference for the reader interested in A
Af(t) = L S, whk-
these developments, i=1 1
In each of the heavy tre “ic limit theorems cited above the limit process has is a Poisson process
turned out to be the Wiencr - -oss with a negative drift satisfying, where appro- non-negative, non-cu .
priate, a reflecting boundar - _mdition. Recently Yamada (1982) has given a dif- now on we also assuc |
fusion approxization for a s ence of storape processes X (t)  where the limit R
o n . p = A and k = v
proecess  Y(t) is no longer o Jieaer process with a negative drift but is instead 1
" Following Yamac
| a Bessel process with necativ. irife. This result is of more than routine interest,
-: It shows for example that the -t of possible limit processes that can cccur in 2.2) Xn(t) =X
. queueing and storage theory | a much larger class than Theorems 1, 2 and the sur- {
H . s a sequv
; vey article by Whitt (1974) + :1d lead us to believe existed. In addition Yamada's N, (t)
=1 thecren (a precise version of -lLich will be stated below as Theorem 3) offers a A (t) = ‘E s‘i‘,
i n d
g challenge Lo the traditionai . thods by which such limit theorems are usually i=1
: proved. In particular, neith . the Trotter-Kato-Kurtz method cf Kurtz (1969) nor (2.3) r >p,
H n— o
: the martingale method of Papn’:vlaou, Stroock and Varadhan (1977) are directly ap-
1 plicable to this limit theores because of some nontrivial technical problems of (2.4) x(;n -~
'i independent interest and the - -'utions of which are also of independent interest. 1/z
H 2
N It is the purpose of this papc: to give a new and simpler proof of Yamada's theorem (2.5) lim n E
R nr e
3 using some results due to Bres.s, Rosenkrantz and Singer, with an appendix by (2.6) Lim k
L 2. m =
? P. D. Lax, (1971) which, rest...:d in the more modern terminology of today, implies n> o n
i
H that the martingale problem f . the operator corresponding to the Bessel process 2.7 G
. sup x(r
with drift has a unique soluti-n -~ sce Stroock-Varadhan (1979) and Ikeda-Watanabe n,x>0

(1981) for a general discussico. of these ideas. [t turns out however that the es-

(2.8) X (0) = =

timates we needed to make the -artingale methods work already imply the strong con- n
vergence of the semigroups in tie sense of Trotter-Kato - see Theorem 4 below. (2.9) 11

. m
These as well as other results from Functional Analysis are collected in an appen- crw

{y>c
dix. We shall also use the staniard notations: Co(R+) = {f: { bounded and con-

tinuous on rt - [0,2) and lim £(x) = 0} f(”)(x) = pth  derivative of f, Cg(R*)=

() + X + bounded: {u;}. (..
¢ Co(R ), L< <k}, We make CO(R ) into a Banach space in the

From these conditicz

q if e CO(R+):f
(u;) 1s a bounded
implies {)\“} is t

3

t usual way by giving it the norm "f] = sup |f(x)!. The symbol B denotes the
L 0 x <
-

=

3

1

‘a.

end of a proof.
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2. STATEMENT AND PROOF OF YAMADA'S DIFFUSION APPROXIMATION,

(also called a storage pro-

A(t)

denote the content of a dam at time t

X(t)

cess) with release rate

Let
r{x) and random cumulative imput which is assumed

A is assumed to be finite and

F(v).

may be realized as the unique solution of the

to be a compound Poisson process., The jump rate

the cumulative distribution of the size of the jump is denoted bv Cinlar-

Pinsky (1972) have shown that X(t)

stochastfic integral equation

(2.1 X(t) =
Ny (1)
A(t) = ¥
i=1
is a Poisson process with intensity

t
X(0) -~ J r(x(x))ds + A(t), where
o

S i.i.d. with common distribution F

i S

i and Nx(t)

where the are

A. r(x) 1is assumed to be a

+
non-negative, non-decreasing function with domain R = [0,0), r(0) = 0. Fron

ry‘dF(y),
[s]

The release rate

now on we also assume that r = lim r(x) is finite. We set ui =
x—‘)b)
p = Aul and k = /kuz .

Following Yamada (1982) we make the following hypotheses:

t

(2.2) Xn(t) = Xn(O) - Ior“(X“(S))ds + An(t), n=1,2,...

is a sequence of storage processes with release rates rn(x),

N, ()

n
A () = ¢ s, pP(s" <y) = F (y) satisfying the normalization conditions:
n i1 i i- n

= - n no_ i
(2.3) o2 P 0= Ay, W= E y dF_(y)
(2.4) X(;n - rn(x)) +¢c<® ags x+*® np>®
(2.5) lim o 2G - 0 Yk =4,

o o n n""n
2.6)  Umk_=k>0, & =)

wrw n n
2.7) sup x(r -1 (x)) =M<»

n n
n,x>0
= o =
(2.8) Xn(O) ) lim xn/kn»n X .
n>

(2.9) lim J yzdF (y) = 0 uniformly in n.

[ondid n

{y>c}

From these conditions it is easy to see that cach of the following sequences is

bounded: {U;). {U?}. {Xn}, {Pn} and (;n}' For example (2.9) implies that

(n;} is a bounded scquence and  a fortiond so is (u?}. This together with (2.6)
implies {An} is bounded and the other statemrents are proved in a similar fashion.

< g

=

LA,

. e e e s
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THEOREM 3 (Yamada):  Set Y“(lfr = .‘("(n')/knfn- and assume conditions (2.3) through

(2.9) hold and that  lim Y‘(U) = ¢, IThen Y“(t) converpes weakly to a Bessel pro-
n e )

cess with nepative drift Y(t), starting at x. Y(t) is a (Markov) diffusion

+ ;
process on R = [0,-) whose jzfinitesinal generator is given by

(2.10) GG = (/D100 + /R (O /x) - dET(x).

Remarks:  This is oot the form in which Yamada states his theorem. Specifically, he
shows that  V(t) = VZ(t) where 2(t)  is the unique solution to the stochastie in-

tewral equation:

t t
2.11) Z(r) = 2(0) + j (R = 23.%(s)Nds + 2J VZ(5) dw(s)
(6]

o
where K o= 1+ 2c/k2 and w i¢ the standard Wiener process. Thus 7(t) satisfies

the stochastic differential cquation

I dz(t) = (K - 2dvZ(t¥de + 27 (E)dw(t)
= bh(Z(t))dt + 1(7(t))dw(t) with

2.12)
l b(x) = (K - 2dvX), x >0 and a(x) = 2/x .

Notice that neither a(x) uor (x) (when d # 0) are Lipschitz continuous and

o the existence of a unique <olution to the stechastic differential equation (2.12)
is not a trivial matter. The existence of a unique solution is bhowever a conse-
quence of a more general result édue to Okabe and Shimiza (1975). Before proceeding
to our own preoef Yet us sketueh the idea behind Yamada's proof. He first shows that
the processes Yn(t) are tight in H[O,T] aad that if Y(t) is any limit then
7(r) = Y(()z solves the wartingale problem:

{

(2.13) £(72(t)) - £(2(0)) - J;’K = 2d)7(s))E'(7(s))ds

S

VZ(sY € (7(5))ds is a zero mean
o

martingale for every f ¢ CE(R). CE(R) is the set of twice continuously differen-
tiable functions, with compact support. This shows that every weak limit solves
the martingale prublem (2.13) which, thanks to the results of Okabe-Shimuzu, op.
cit, is known to have a unique soluticn. The proof that Z(t) is a solution to
the martingale problem (2.13) is almost 5 pages long and the proof that the pro-
cesses {Yn(t)} form a tight sequeace is nearly 6 pages long. It is the purpose
of this paper to give an alternative proof of this result which we believe to be
easier to follow and {s also sumewhat shorter. First we shall give a heuristic
proof and put in the (tedious) details elscwhere.

We begin by observing that Yn(t) is for each n a Markov process on the

half line R+ = [0,%) with infinitesimal generator Gn given by

T oot LT R S
- SN .

. . o s TN

..... DR A WL S VI PP DU S, W SO0 LI CURE S S, o S

(,nf(x) - -

(2.14) ]
(.“t Q) = -

Here H (-
n

See for example Cinl.i
where the operators

some detail,

DEFINLITION: D(G) =

at (..
Later on, in Append::d
finitesimal yeneratc
terizing D(G) 1is =
this was already do:J
the case d # 0 1is

-df"(x) is relative_

(2.15) Bf(x) = (1

in the sense of Katc

way we can give a qu-

LEMMA 1: For every

vergence is uniform :J

Sup‘lan(x)" < o,
n

PROOF: Using the Ta--
where R(x,y) = (1/Z

oA r[f(x
(+]

QA -

where |2R(n)]| £ nln

11im R{(n) = 0. On the

n> o

(2.16) Gn(f(X) = -

n
since nlnullkn/; .

[
1
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261 S
ions (2.3) through (:nf(x) = - (/Elkn)r"(k"v’H'x)f'(x) + n\nr[ﬁl:@y) - f(x)]dlln(y) )
3 cae o
to a Bessel pro- (2 M) for . x >0 and
2ov) diftusion G £(0) = n} [f(y) - £(0))dn o).
n nj, n .
') = e -
Here Hn()) Fn(knm v). 8
Specifically, he Sce for example Cinlar-Pinsky (1972), Harrison-Kesnick (1976) or Rosenkrantz (1981) -
<he stochastic in- where the operators Cn and their domains (both stroiy and weak) are discussed in N
some detail. '
-l
DEFINITION: D(C) = {f ¢ C(Z)(R+):f’(0) = 0}, where tu operator G 1is defined %
” .
;* us  Z(t) satisfies at (2.10). 1
. Later on, in Appendix A, we will show that B(G) is i.e domain of the strong in- .
S
r' finitesimal generator of the semi group T(t)f(x) = Ei(f(Y(t))). 0f course, charac-
b~ terizing D(G) 1is not, in general, an easy matter bu: in the special case d = 0 )
]
} this was already done by Brezis et al. (1971). The ¢.-cnsion of their results to [
" the case d # 0 is carried out in this paper by showisz that the operator Cf(x) =
» continuous and -df'(x) is relatively bounded with respect to the Bes.ol operator
P ial equation (2.12)
wever a conse- (2.15) BE(x) = (L/2)f"(x) + (Y/X)f'(x), Yy > -1/2,
Before procecding in the sense of Kato (1976) cf. Appendix A. With these preliminaries out of the
first shows that way we can give a quick heuristic proof of Yamada's ticorem by deriving the
any limit then
LEMMA 1: For every f ¢ D(G) and x > 0 we have 1.~ an(x) = Gf(x); the con-
new
vergence is uniform on every interval of the form [~ § >0 and
Sup ”G]f(x)“ < o,
n T
PROOF: Using the Taylor expansion f(xty) - f(x) = f"{x)y + (1/2)1"'()())'2 + R(x,y)
rnwously differen- where R(x,y) = (1/2)(f"(¢(y)) - f"(x)) and x < {(y < x + vy, we see that
: y y < <
E' & limit solves o
‘ se=Shimuzu, op. n)\n J [t(x + y) - f(x)]dHn(y) =
F a solution to . ° o A
[: © that the pro- nknf'(x) J ydlln(y) + (1/2)nlnf"(x) 4 yzdlln(y) + R(n)
v s the purpose ° 5 ‘
; believe to be where |2R(n)| < n\n rl[f"(g()')) - f"(x)]]y"dH“(y). in a moment we will show that
o o
P‘ < a heuriatic Hm R(n) = 0. On the other hand rydll“(y) = u';/k“-/f- and I yzdlln(y) = Lxglkin S0
n*o o ]
F' “rocess on the (r.16) G (f(x) = [~k dr (kvmex) + (Voe fx Y1 ix) + (172)17(x) + K@),
n n"'n n n''n
% since n) un/k Joo= oo /k and  n) u',‘/kzn = 1 - see (2,3) and (2.6). Adding and
nl n n’n n2 n
3 .
A .
r
A o
. R
DRI :.‘ . P L‘L. - L. .L;._':';_AL: ._‘ . L ;: -\_Al—.‘.L ;"-;"';:'&'1 ‘;; . .':A_.- " k:'-. '-\':.-
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subtracting the term (/;/k“)?“r'(x) to the right hand side of (2.106) we obtain
G flx) = («'ﬂ/kn)(Fn - rn(kn.fn‘-x))f'(x) + (/E/kn)(pn - Fn)f'(x)
+ (1/2)€"(x) + R(n).

For x>0 we have (Ja/k )(F - x_ (k /Rex))E'(x) = (knJR-x/ki)(;n- £, (k /RN €GO/

consequently (2.4)(2.6),(2.7) iaply that for x > 0 lim (/;/kn)(rﬁ-rn(kn/ﬁvx))f'(x)=
B n-=xo

(c/kz)f'(x)/x and the convergence is uniform on the interval [&,+). Hypothesis

(2.7) implies that the term is wniformly bounded in n and x. Similarly con-

dition (2.5) implies 1lim (/E/k“)(rn - Sn)f’(x) = -df'(x). Thus the lemma will be

n»*o

proved if we can show that 1lim R(n) = 0, where
n<>w

€
2xe e m [ 1 Een-eolyan o) rnAnJmlr"(s(y)) - oo y2an ().

) €
Now for € Esmall cnough [f"(f(y)) - f"(x)[ < 5§ and this together wvith the fact

2 2
y"dHn(y) < nX“ v dH“(y) = 1 implies that the first summand in the
o o
expression above can be made arbitrarily small. As for the second summand a
o0
2
2 an(z)
k“/F-c
which goes to zero by hypothesis (2.9) and the fact that both An and k: are

bounded. 8}

that nl
n

change of variable yields the formula n\n yden(y) = (Xn/ki) J
(3

It is easy to see that lin Cnf(O) # Gf(0). Because Gf(0)

"> o

(c/R2YE"(0) - Af'(0) = (1/2 + c/k2)E"(0) since £'(0) = O and f € CS(R+) im-

nknfm (f(y) -
o

f(O))dHn(y) and using a two term Taylor expansion as before we get that

(1/2)£"(0) +

*
lies f"(0) = lim —f—f‘—"‘)— .

x0

On the other hand (by (2.14)) an(O).

lim Gni(o) = (1/2)f"(0). Thus the only time an(x) converges Gf(x) for all

n*o

x € R+ is in the special case ¢ = 0. {.e. when the limiting process Y(t) 1is
the Wiener process with a negative drift reflected at the origin. This phenom-
neon of convergence of tne yenerators except at certain exceptional points is
quite common and occurs even in the example of Theorem 2 - cf. Burman (1979) p.17.
Nevertheless, it has been ohserved by several authors including Papanicolaou,
Stroock, Varadhan (1975), Burman (1979) that weak convergence of Yn(t) to Y(t)
can be proved, provided one can show that the occupation time of the exceptional

set by the process Yn(t) can be made arbitrarily small as n + =, TIn the present

r
context we must estimate J I[O 6](Yn(s))ds which is the occupation time of the
o ’

set [0,5] by the process Yo(e).

LEMMA 2: Under tih

such that .

2.17) lim su:
n"‘:

Setting aside -

AW e

strong convergence

THEOREM 4: Under =

(2.18) lim Jj€

n*v

PN

where the convergern v
ing to the proof cr
characterizing the

fined at (2.14).

T

LEMMA 3: lLet Gn

storage processes.

Case 1:

(2.19) i

(2.20) Case 2: "

PROOF: This theore .

of Rosenkrantz (192 _

%

Clearly D(G)

tion

(2.21) Tn(t)f'

cf. Bur-

L.

We pauseto introduc..
x c¢[4=) and 0O
Thus (Gn - GOT(8):

‘
Lasa

HTn(t)f(x)-'T(:

AR . .

since Tn(t) is a

PPN D ¢ ronme|




! (2.16) we obtain

)

73

\
2y
'
.-

1£%(x)

,:n - rn(knfr;'x))f'(x)/x

) rﬁ-rn(kn/ﬁ-x))f‘(x)=
T L)

Similarly con-

Hypothesis

-- the lemma will be

2
v dﬂn(y)-
cer with the fact
—.t summand in the
q

-4 summand a

zzan(z)

and k2 are
n

- (1/2)£7(0) +
b -
[

e cg(x") im-

p
L - nxnr ({(y) -
(o}

-t that

L f(x)  for all

f' cocess Y(t) s
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LEMMA 2: Under the hypotheses of Theorem 3 there exists for any ¢ >0 a &8 >0
such that

T
(2.17) lim sup Ex L I[O,'\](Yn(S))ds <

n-}w
Setting aside the proof of (2.17) for the moment let us show that this implies

strong convergence of the semi groups.

THEOREM 4: Under the hypotheses of Theorem 3

(2.18) lim E (FQY (0) - E O] = Lim [iT (1) - 1)1 = 0,

n*r» nrw

. : +
where the convergence is uniform for t ¢ compact subsets of R, Before proceed-
ing to the proof of Theorem 4 we need a result due to the author, Rosenkrantz (1981),
characterizing the domains D(G“) of the integro-differential operators Gn de-

fined at (2.14).

LEMMA 3: Let Cn

storage processes, Then

denote the strong infinitesimal generator of the nommalized

Case 1: 1If rn(x) T, X > 0, r“(O) = 0 we have

it

(2.19) DG ) = {f c(‘)(k'):f'w) = 0}

(2.20)

It

Case 2: D(Gn) {f ¢ CO(R+):rn(x)f'(x) ¢ CO(R+), limrn(x)f'(x) =0} .

x+0
PROOF: This theorem is proved in exactly the same way as Theorem 4.6 on p. 219

of Rosenkrantz (1981). (1

Clearly D(G) « D(G“) and hence for every f ¢ D(G) we have the representa-

tion

t
(2.21) Tn(t)f(x) - T (x) = j Tn(l - s)(G“ - C)T(s)f(x)ds,

0

cf. Burman (1979) p. 14, formula 2.2.

We pavseto introduce some notation: 1F g(x) is a function set g&(x) = p(x) if
x «[&%*) and 0 otherwise and put

Thus (0
n

(%) = op(x) - (X3 so g (x) 4+ g (x) = g(x).
- GO (x) = [(Cn - C)1(s)f]6(x) + [(G" - GYT{s)I]) ((x)  and therefore

t t ~—
H'l'n(()f(x) ST ] < j n[u:" -(:)'l(s)flé(x)(!ﬁ + HJ 'l'n(l—s)[((in —(:)'1'(5:){]3‘(:()‘15]]
(o]

[¢]

since Tn(t) is a contraction semi proup.

c. -

Satitl

r
1 2%
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a For f e D(G) the apriet( estimate (A.8) and Lemma 1 together imply
; 1im (Cn - G)T(s)f(x) = 0 wunifcruly on [5,+) and uniformly in s, 0 < 3 < t,
nr»
t . T~
: Consequently lim Jll[(ﬂn - C)T(s)f]s(xﬂids = (), bimilnrly.[(ﬂn—C)T(s)ﬂs(x) £ 0
.. nrw ‘g '

N
g

orly on the set [0,%] and since by Lemma | and (A.8) ”CnT(s)ﬂ| and [|cr(s) ]

t
are both uniformly bounded we conclude ij Tn(t - S)[(E;‘t.ETT?:)f]G(X)dS| =
¢ /—v o
IExL[(“n -~ (:)'[‘(s)f]d(\'n(t - s))ds|

A

t
c'Ex[J [[0 5](Yn(s))ds] where c¢' =
o ’

sup f”CnT(s)f(xﬂl et olfl. We now apply Lemma 2 and choose 8 so small
n,0<s<t

t ~ .
that lim sup E (J 1 (fY (s))ds] < g * c-l frou which it follows at once that
- xU, {0, 'n -
+
lin sup!lrn(t)f(x) - T ()] < < uniformly for t ¢ compact subhsets of R . N
nr»

We now turn to the proof of Lemma 3. Following Yamada let Vn(t) denote the
storapge process with En(x) = ;n’ x >0 and ;n(O) = 0. Since fn(x) > rn(x)

it is <lear that ?"(t) > Y¥(t) .and in particular

t [ t _
hx[{)I[O,ﬁ](Yn(s))dsJ < hxiLJ [[0‘5](Yn(s))ds] .

Thus to prove Lemma 3 it suffices to prove that

t
(2.22) l'l:r‘s‘up F.x{ L ([0',‘)](‘7‘1(5))\!3] <€ .

It is convenient to split the proof into two parts:

t
2.23) 1im Ex{j I[o](\'n(s))ds] =0
o+ @ o
t -
(2.24) li:’ﬂ:p Ex( Io I(U,ﬁ](Yn(s))ds] <e .

PROOF OF (2.23): The infinitesimal generator G; of ?n(t) is
.t = - 'I"' = ' , _
bnf(x) = =( n/kn)rnf (x) + an [j[f(x +y) f(x)]d“n(y), x>0
b = -
Gl £(0) nknf:[t’(y) f(O)]dHn(y).

Applying Dynkin's formula as in Theorem 3.1 p. 216 of Rosenkrantz (1981),

leads to the formula

{t
(2.25) E(F () =x- (v/{;/kn)(rn-cn)t+(/§/kn)rn F,x[)o I[O](Yn(s))ds] .
In the appendix §t will be shown that sup Ex(?n(s))C‘n for every t>0 and
hence 0zs<t
3
(]
b

]

_J

Y

.

(2.26) (/n/k )r_ ]
4

By (2.7) 1lim *

n* o« 1

bounded whilst lizm <
n* - 4

o

t
.21 ExU I,
o

Turning now to the - .

and when d = 0,

[ ororere

Case 1: d = lim

n+ o

LEMMA 4:  For everv

the weak infinitesi..

PROOF: Sce Harriso:n -

f (x) is Lipschitz
‘4

on [0,ﬂ]. Thus,

(2.28) G;fa(x) =

(2.29) [anQ(O)( =4

e oy o ]
Cnfa(x) >

Now for large

on (0,&] provided q
4
L
5

Tn(t)fa(X) - fu(x) =

t
other hand E {J (%4
x{J, n

(C0e
+ EX{JO anﬂ(Yn(S))I(

\

t‘ -
Kol ”0 Gr:fu(yn(s)”[(f .

val (0,a] however,

1lin sup

n*©

t
> (d/Zu)Ex(LI(o,a](' %
:
Y
|
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cr imply

.y 0 < s <t
~——~

LS OT(s) ] (x) 0

h and [lcT(s) (]

F ] 00ds] =
-7 where o =
;Z sose 6 so small
aws at once that
~sets of R*. 0

e

F(x) >r (%)
n - n

}
L " (1) denote the
3

L s G ame gl 4

‘e

(y), ¥y 0
n

LIS A8 ame snn sen

rantz (1eB1),

Py codn]

1 Y"(-.))(I..J

r every t >0 and
V.

T T LY

t
(2.26) (.’n‘/kn)f»n Ex{ L 1[0](Yn(s))us} = Ex(‘?n(u)) -x+ (.’E/kn)(?n - et

By (2.7) lim (u’f;/kn)(;“ - ('n)t = dt  so the right hand side of (2.26) is

n+o

bounded whilst 1lim (.’ﬁ/kn);" = + %, consequently
n—»m

t ] _]/,,
(2.27) EXU I[O](‘,'n(s))dsJ = 0(n ).
o

Turning now toe the proof of (2.24) we must consider separvately the case when d > 0

and when d = 0.

Case 1: d = lim (/E/kn)(rn - o)) 0.

nrx

LEMMA 4: For every ‘v > 0 the function fx(x) = [1 - ¢x/ t)]+ is in the domain of

the weak infinitesimal generator (:"1. y
]

PROOF: See Harrison-Resnick (1976). Of course Gr'x iv an extension of Cr" and ’
f“(x) is Lipschitz continuous with ‘!f(x(x +y) - fu(xi‘v: <y -(z—l, f;(x) = —1—1 <
{ e i 4

on [0,4]. Thus, 4

(2.28) 6;]ru(.v.) = (/n'/kn)?".i’ + n)\nL [f:l(x +y) - fz(x)]d!{n(;«), 0 < x < u,

e et S B ~ X )
(2.29) l(,n(uw)g X (-u/k“).n ¢, G () =0, > w., In particular

G'f (x) > Ga/k )t ol Lo
n a T n n

= VARG - ) en (0,4]

[} Vo u 5 Vn on st

Now for Jarge n, OR/k)I(r -1 ) » d/2 >0 av? this implies §'f (x) > d/2n
n"'n n’ - n =

A

on (0,a] provided is large enough. Notice that :.‘l(x;,, < 1 and hence

1
) o

n
v o (0 .
TH(L)lu(x) - f,"(x) = ( I‘n(c,)(,nf“(x)ds jmplies IEXU, .‘f ‘(\ ]\:;))ds)] < 2. Or the

b

,‘(s))dqj

t. _ t. _
other hand EXUO (::‘fu(\n(s;))ds} = Lx”o(:nf '(\“(s))l[o]u

t"’ — -
+ E ” G'f (Y (s))1 (Y (S))df:" . From (2.27) and “:.19) we see at once that
X L, ntn '1] n J

0,

o o ]

- N s . ] oY N N Y M sa- A S oo i S -
P.xz Uu ('nfu(‘tn("))][O]On(")i ){ is bounded, by M sa-, n -+ On the inter ,
t K
) wover, G'f (x ) an . b are (F (s T (s)ds .
val (0,a] however, (n(u()‘) 2 (d/21)  and therefore :(U‘(nfu(‘ln(s))l(0"1](‘{"(\)(1.\} :

(N

¢ !
» (d/Lx)LxU“ 1(0,'1](Yn(5)d“;] . dherefore as n » ® we et .
lim sup hx[rl(O‘L‘](Y“(n))ds] 7 (24 My2aie !
n'ai (4] v "
i
-




re—po—

1

T

PR IPP TP UL, WP S Wi SO Wl Y P T R I A L PP T W DU P S TPy

206

e proot s now completed by cooosing o v d/ (4 + 2M).

#

Cane 70 d = 00 In this case cim (il'\f(:\') = (1/2)YE"(x) for every f ¢ D(G)

we v

¥
S + . L . R . . ‘
B k'()(k Yt (W) = 0l el tae limit process in this case is redlecting Brownian

Tt ion lu(L)‘.. Thus the orisizal Trotter-Yate theorem ftael! fmplies that

Vied JE_GGE (o)) = ¥ i Cw(o DI = 0.
Nt X n x

(1973) that §ll([) converes weaklv to Jw(t)] or if one prefers, the weak couver-

[t is a consequence of a theorem of Aldous

cence ey be ledgeed trem g rore joeneral resuelt due to RKurtz (1984), Theorem 404,
It iw well known that redlectier: Brownian sotion has a local time  «(t,y,w) and

t
theretiore ( Ir” .J'(.‘,-:(s);)‘l‘; -t (v, ddy <ty where
L,

(8} )

(t,y,) 1is jointly con-

tinums in (t,v)  for each .. By Lebeoyne's dominated converpence theorem then
N

wer Jave J5 >0 suh that

Tim W Ay, Nivpocd and o given any o+ 0 0
Ly Ux J
‘

frt .
i [ :[” ‘J( wCYDas| o,

o
et s lenote b B and P the mecinres induced on plo,1] by the ?n(t)
it Y roeesies repective by 1t Bs well known that the functional
ri
, l[,) .J‘-(i))*i‘i. Yere - s oa path in [)[0,]'], is continuous almost every-
‘o *

3illingslev (1968), pp. 230-231., This

e with re oot to the measure Py,

tact teanether with the weak converaence of P‘ to P oand Theorem (5.2iii) p. 31
r

it hilliaeslev, op. cit,, foply

) i {rt i . ] J— [ . -
(2. 30) lim hvij l[”‘;](.n(x))dh) = E_ 1[0’5](!w(h)|)ds < f, 8!

a0

ftee proot of Theorem 4 is now conplete,
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Let  Br(x) = ¢
acting on the domai: |
(1971) that B8 acc.
tinuous, contractic..
timdate was alzo obt .
a more general resu:
[EMMA: For every

such that

(A1) el <

Woe next observe thas ]
fined by (2.15) and
clearly DEC) > Bz |

-
IHEOREM: 'here exi. ?

the inequalivy
(A.2) flerf - -

REMARK:  When (A2

wspecs o 3 - see

PROOF:  Let II;'“[a .

RTINT
Saptefl e, L where
eI ]

Ihe proof of in 1.

(1.13).

PR \,_A Y

(.1 ”f'“(:\ k .

Spevializing (AL3) t.

Y

PO

.

R [X [T

If now f ¢ C(z)(

hence

(A.5) ||r'!|[k -

aon AW e . A,
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b APPENDIX

Let BI(x) = (U/2)("(x) + (/)" (x), 1 > -(1/2) denote the Bessel operator

f e D(G) . 2+
acting on the domain D(B) = {f . CO(R ):f'(0) = 0'. It was shown in Brezis, et al.
tlecting Brownian (1871) that B acting on D(B) generates a positivity preserving, strongly con- h
. Slies that tinuous, contraction semi group 1"](t):C()(R+) - CU(K+)' The fellowing apadond es- ﬁ
coren of Abdeus timate was also obtained (sece Theorem (A1) p. 411 of Brezis et al, (1971), where b

the weak conver- a more general result Is given):
. : :

t' ), Theoren A%,

LEMMA:  For every f e D(B) there exists a constant ¢ > 0, depending only on 5

[ _ (t,v, ) and ’
e such that
L ' in ‘}nintl\' o=
s (A.1) ol < ajen] .
-
s e thieoren then ]
We next observe that the operator Gf = Bf 4+ Cf  where B is Bessel operator de- E
cuch that . . . .
e fined by (2.15) and Cf = -df', i.e., G is a perterbation of the operator B; t
b clearly D(C) > D(B). ?
! q
: Tohe the ¥ O(1) THEOREM:  There exist constants a > 0, 0 < b < 1/2 such that for every ¢ D(B)
wothe Y () .
et feat the incquality E
Cintnemrs alme st osvery- (A.2) H(;flz - &1“ f“ + b”m';f‘ holds. i

REMARK:  When  (A.2)  hold-. the operater € is said to be ‘;\'i'a"lf\\'({/ Eowrnded wael

. o respect t¢ B - see Kato (1976), p. 190,

"
[ B

. o . ‘.;.
' PROOY:  Let il;"“[a,h] = sup !i:(x)! and observe that, for ¢« LU(L ), |

atxh

Su1)lly':'\[k Y1 I] where the sup  is takea over all non-nesative integers k=0,1,2,... .
k T

The proof of inequality (A.3) below is to be found in Kato, op. cit. p. 192, formul:
(1.13).

(A.3) ”f'“[a,h] < [b~a)/(m+2)])] f”;;[a,h]+ [P+ D/b-:0]0 f”[a.h]

for every f (‘.?[n,h] and cevery on v,

0 PRAKE
a
. VTN ST . W PRSI R\ A O

[ Specializing (A.3) to the special case [:l.b] B [k,k‘]] vields
3 !

ALl " - N 2 M

(a.6) Wi ey 7 e s Flepar) 2D g

2.4 " BT . Sl

¢ If now f ¢ CO(R Y we have ||f ':[k,k*l] A and Hhi[k,vﬂ] e and
- hence

(A.5) N < D7+ 2 DI

- s
. - LR - . . . . . e e . - 2. o™ PR . P PR . ]
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Consequently for every ¢ D(B) we have

el = Snp{lfﬂl[k k1) T (n #2)_H‘(ﬂ| t2(nt Uﬂf“ and in particular
K LK,

(A.6) ledl « Lx(n+2)":lx”il t2dn+ DY) <+ 2)"1

where we used (ALD) in the lasc step.

. o . ; syl 1 s
thus by cheosing no> Xdd = 2 we have b = Fd(a+2) < 5 and this completes
the proof (A.2) with a = 2d(n+1). {1
fhe tollowing Qe estimate is also an casy conscequence of the above cal-

culation:

(3.7 Lrdl - oollod earaa e D]

PROOF: Since Bf = Gf - Cf we have from (A.1)  and (A.6) that
)

dynt < Gofl + Aol < Aot rda +2)_1”(“H + 2di(n FI)”Y“. Since Fd(n+2)

we have (1 - Yddn FZ)—[)”(”i < Yot o+ 23d(n t DIl and hence
!f{"q B ZuHCfﬂ + Afd(n-fl)”f“. {]

Combining all these estimates together with Theorem 2.7 of Kato p. 501 we

arrive at the

gl + 2d(n + D] 1]

1.1
2

THEOREM:  The operator G = B + C generates a positivity preserving, strongly con-

. - + +
tinuous contraction semi group l(t):CO(R ) - CO(R ) with domain D(G) = D(B) =

2 4
i CO(R Y:f'(0) = 0}, Moreover for every f ¢ D(G) we have the following

noriond estimarer ([ < 2ol + 42da+ DY f. In particular if

F(2)f « D(G) and therefore

(A.8) 12D T ] < 2ilarayd] + a2d+ D) |
< 2djres)edl + ard+ D) 4|

< 2dted] + sra+ D))

We have used the facts that T(s) commutes with its infinitesimal generator

f « D(G)

then

G

and that T(s) is a contraction. Notice that the right hand is iadependent of s.

We next turn our attention to deriving the estimate:

(A.9) Sup E_(F (s)D) < x% & ¢,
X n -

0<s<t

ihis clearly implies  Sup E_(¥ (3)) < = which is all we needed to derive (2.27).
Orsce *°

Preor OF (A.9):

“ W) + 60
Thu [( /i) n

supermartingale,

(O 3

1R
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_'l_ .
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laT-

Q .n particular

2dn+ 1)) |

and this completes

zv of the above cal

1

ince RBd(n+2) <%

-

rato p. 501 we

wing, strongly cen-
D(C) = B(B) =
e following

“f f € D(G) then

~#1 generatour G

independent of s,

¢ ! to dexive (2.27).

A S i d i LA AR S A Arunk A S A = P A

269

2

PROOF OF (A.9): Let U(t,x) = x~ - t and observe that

cx"U(t,x) -2(/E/kn)t°'nx + an [: (2xy

1 - (2.G/kn)x(Fn -p) <1

Thus [ (3U/3¢) + C['\]U(t,x) = -1+ G'U(t,x) < 0;
supermartingale. Thus Ex(‘?n(t)2 -t) £ X2 or

+ yPyam (y)

+
on R ,

consequently ?n(t) - t2 is a

. T 2 2
E N (7)) <xf+e. 0

LW

n

U

N1 USRIy |
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the reader to Rosenkrantz (1980) for a rigorous proof as well a- an estimate of the rate of convergence. To begin with,

one notcs that (1.1) F (x)=P((a/0)W(n,2) <x) = P( sup, y
n,a - 2 n,
O«t<a’n

“(t)f x* where yn.u(t) is a certain stochastic process

with continuous paths. Ome can then show, formally at least, that a.2) 1im . yn.u(t) = y(t)  where y(t) = w(t) - tf
samne
Here w(t) 1s the standard l-dimensional Wiener process.nd so y(t) is the‘;ieilr process with negative drift. It follows
at once from (1.2) thac (1.3) “*{::*0 P(Oft;: . y .n(t) < x) = P(O::gw y(t) € X} L14 an easy calculation, see e.g. '
bl"lin-T.y]o, (1975), p.361, yiclds the result oo, P(osuP y(t) < x) - 1 - exp(-2x), 0 ¢ x < =, Another and simpler example
‘tre
of a heavy traffic limit theorem is the following: let -Nn(t) denote the queuc size of an' M/M/1 queue with arrival rate‘
.Xn. mean service time distribution u;l and traffic intensity o, - Xn/un. Assume A“ =

Lo 6n-1/2
n

the service time distribution which in this éase equals u;z .

for some & > 0, so 0 < oL < 1 and denote by oi the varfance of

THEOREM 2: Assume X = lim A = limp_=u so limop 41, and 1lim 02 = 02;
n+ oo n > a n n'§:)
then lim Nn(nt)//ﬁ = y(t) where y(t) is the Wiener process on R = [0,) with

n—+ w

varfance A 4 02u3, nepative drift ¢ and reflected at the origin. Theorem 2 has

been extended in many ways and by many authors including Iglehart and Whitt. The
survey article by Whitt (1974) is a useful reference for the reader interested in
these developments. V

In each of the heavy traffic limit theorems cited above the limit process has
turncd out to be the Wicner process with a negative drift satisfying, where appro-
priate, a reflecting houndary condition. Recentlv Yamada (1982) has given a dif-
fusion approximation for a sequence of storage processes Xn(t) where the limit
process Y(t) 1is no longer a Wiener process with a negative drift but is instead
a Bessel process with negative drift. This result is of more than routine interest.
It shows for example that the set of possible limit processes that can occur in
oueueing and storage theory is a much larger class than Theorems 1, 2 and the sur-
vey article by Whitt (1974) would lead us to belicve existed. In addition Yamada's
thecrem (a precise version of which will be stated below as Theorem 3) offers a
challenge to the traditional methods by which such limit theorems are usually
proved. In particular, neither the Trotter-Kato-Kurtz method cf Kurtz (1969) nor
the martingale method of Papnicolaou, Stroock and Varadhan (1977) are directly ap-
plicable to this limit theorem because of some nontrivial technrnical problems of
independent interest and the solutions of which are also of independent interest.
It 1s the purpose of this paper to give a new and simpler proof of Yamada's theorem
using some results due to Brezis, Rosenkrantz and Sfnger, with an appendix by
P; D. Lax, (1971) which, restated in the more modern terminology of today, implies .
that the martingale problem for the operator corresponding to the Bessel process

with drift has a unique solution - see Stroock-Varadhan (1979) and Ikeda-Watanabe

(1981) for a general discussion of these idecas. It turns out however that the es-
timates we needed to make the martingale methods work already imply the strong con-
vergence of the semigroups in the sense of Trotter-Kato - see Theorem & below.
These as well as other results from Functional Analysis are collected in an appen-
dix. We shall also use the standard notations: Co(R*) = {f: f bounded and con-

tinuous on R’ = (0.=) and lim £(x) = 0} f(z)(x) = gth derfvative of f, CZ(R‘)-
+ (D) = +
{f ¢ Co(R ):f € Co(R )y 1t < k}. We make CO(R ) 1into a Banach space in the

usual way by giving it the norm ||l = sup |f(x)|. The symbol B denotes the
O<x <o

end of a proof.
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